
LectureLecture –– 88Lecture Lecture 88
SectionSection--B B

Theoretical concept of Unix Theoretical concept of Unix
Operating SystemOperating SystemOperating SystemOperating System

CPU Scheduling in UNIX

Deals with problem of deciding which of the processes in

ready queue is to be allocated to CPUready queue is to be allocated to CPU.

CPU scheduling is the basis of multi-programmed operating

systems; by switching among processessystems; by switching among processes.

The objective of multiprogramming is to have some

i t ll ti t i i th CPUprocesses running at all times, to maximize the CPU

utilization.

B i Id f l i iBasic Idea of multiprogramming:

Several processes are kept in memory at one time. when

one process has to wait; operating system takes the CPU

away from that process & gives the CPU to another

CPU scheduling decisions may take place under

following four circumstances:

When a process switches from the running state to theWhen a process switches from the running state to the

waiting state.

When a process switches from running state to ready

state.

When a process switches from waiting state to ready

statestate.

When a process terminates.

CPU Scheduling in UNIX
CPU scheduling in Unix is designed to benefit interactiveCPU scheduling in Unix is designed to benefit interactive
processes.

Processes are given a small CPU time slices by a priorityProcesses are given a small CPU time slices by a priority
algorithm that reduces to round-robin scheduling for CPU
bound jobsbound jobs.

The scheduler on UNIX system belongs to the general
class of operating system schedulers known as round-class of operating system schedulers known as round
robin with multi-level feedback which means that the
kernel allocates the CPU time to a process for small time –p
slice, pre-empts a process that exceeds its time-slice and
feed it back into one of several priority queues. A process
may need many iterations through the “feedback loop”
before it finishes.

Scheduling Algorithms:
Non-Pre-emptive vs. Pre-emptive Scheduling

Sh t t j b fi tShortest job first

First come first serve

Priority Scheduling

Round Robin Scheduling.

Multi level feedback queue schedulingMulti-level feedback queue scheduling

Non-Pre-emptive Vs. Pre-emptive Scheduling

Non-Pre-emptive: Non-pre-emptive algorithms are
designed so that once a process enters the running
state, it is not removed from the processor until it has
completed its service time.

Pre-emptive : the process with the highest priority
should always be the one currently using the
processor. If a process is currently using the
processor and a new process with a higher priority
enters, the ready list , the process on the processor
should be removed and returned to the ready list until
it is once again the highest priority process in the
system.

Priority schedulingPriority scheduling::
The SJF is a special case of the general priority schedulingThe SJF is a special case of the general priority scheduling

algorithm.

A priority is associated with each process, and the CPU isA priority is associated with each process, and the CPU is

allocated to the process with the highest priority. Equal priority

processes are scheduled in FCFS order.

We discuss scheduling in terms of high priority and low priority.

Priorities are generally some fixed range of numbers, such as 0 to

7, or 0 to 4095. In this text, we use low numbers to represent high

priority.

Process Burst time priority
P1 10 3
P2 1 1P2 1 1
P3 2 4
P4 1 5
P5 5 2

P2 P5 P1 P3 P4

0 1 6 16 18 19

Round Robin SchedulingRound Robin Scheduling
This is a form of scheduling where the running jobs are interrupted

to give the other jobs a chance to get access to the processor.

A small unit of time, called a time quantum (or time slice) is

defined. A time quantum is generally from 10 to 100 milliseconds.

The CPU Scheduler goes around the ready queue, allocating the

CPU to each process for a time interval up to 1 time quantum.

To implement RR scheduling, we keep the ready queue as a FIFO

queue of processes.

New processes are added to the tail of the ready queue.

The CPU scheduler picks the first process from the ready queue,
sets a timer to interrupt after 1 time quantum, and dispatches
the process.

One of the two things will then happen:

The process may have a CPU burst of less then

1 quantum. In this case, the process itself will q p

release the CPU voluntarily. The scheduler will

then proceed to the next process in the readythen proceed to the next process in the ready

queue.

Otherwise, if the CPU burst of the currently

running process is longer than 1 time quantumrunning process is longer than 1 time quantum.

The time will go off and will cause an interrupt to

the operating system. And the process will be

shifted at the tail of the ready queue.

Process Burst Time
P1 24P1 24
P2 3
P3 3P3 3

If we use a time quantum of 4 milliseconds, then process P1 gets
the first 4 milliseconds Since it requires another 20 millisecondsthe first 4 milliseconds. Since it requires another 20 milliseconds,
it is shifted after first time quantum, and the CPU is given to the
next process, process P2.

Since P2 does not need 4 milliseconds it quits before its timeSince P2 does not need 4 milliseconds, it quits before its time
quantum expires. The CPU is then given to the next process, P3.
Once each process has received 1 time quantum, the CPU is
returned to process P1 for an additional time quantum Thereturned to process P1 for an additional time quantum. The
resulting RR schedule is :

P1 P2 P3 P1 P1 P1 P1 P1
0 4 7 10 14 18 22 26 30

MultilevelMultilevel--feedback Queue schedulingfeedback Queue scheduling
Normally in multi-level queue scheduling algorithm,

processes are permanently assigned to a queue on

entry to the system. Processes do not move between

the queues.the queues.

Multi-level feedback queue scheduling however allow

th t b t th Th idthe processes to move between the queues. The idea

is to separate processes with different CPU burst

characteristics.

If a process uses too much CPU time, it will be moved p ,

to a lower priority queue. Similarly, a process that waits

too long in a lower priority queues may be moved to a

In general, multi-level feedback queue

scheduler is defined by the following

parameters:

1. The number of queues.

f2. The scheduling algorithm for each queue.

3. The method used to determine when to upgrade a

process in a higher priority queue.

Th th d d t d t i h t d t4. The method used to determine when to demote a

process to a lower priority queue.

5. The method used to determine which queue a

process will enter when that process needs

ApplicationsApplicationsApplicationsApplications
In real-time environments, such as
embedded systems for automatic
control in industry (for example y (p
robotics), the scheduler also must
ensure that processes can meet p
deadlines; this is crucial for keeping
the system stable. Scheduled tasks y
are sent to mobile devices and
managed through an administrative g g
back end.

ResearchResearchResearchResearch
Multimedia applications have unique requirements that
must be met by network and operating systemmust be met by network and operating system
components.
There is extensive research in developing network and
operating systems to meet the demands of multimedia

t ticomputation.
Certain problem solutions are exclusive to the operating
system, some are unique to network research, and some
problems cover both domainsproblems cover both domains.
Research in multimedia spans not only the development of
new system solutions, but evaluating existing systems as
well.
Some research papers attempt to prove empirically how
useful or impractical a system may be for executing
multimedia applications.
Some research deals not with the evaluation of particular
systems, but methods themselves for evaluating them.

